DES Developmental Programming and Fetal Origins of Adult Disease

Proceedings of the Summit on Environmental Challenges to Reproductive Health and Fertility: Executive Summary

Introduction

The 2007 Summit on “Environmental Challenges to Reproductive Health and Fertility” convened scientists, health care professionals, community groups, political representatives and the media to hear presentations on the impact of environmental contaminants on reproductive health and fertility and to discuss opportunities to improve health through research, education, communication and policy. Environmental reproductive health focuses on exposures to environmental contaminants, particularly during critical periods of development, and their potential effects on future reproductive health, including conception, fertility, pregnancy, adolescent development and adult health. Approximately 87,000 chemical substances are registered for use in commerce in the US, with ubiquitous human exposures to environmental contaminants in air, water, food and consumer products. Exposures during critical windows of susceptibility may result in adverse effects with lifelong and even intergenerational health impacts. Effects can include impaired development and function of the reproductive tract and permanently altered gene expression, leading to metabolic and hormonal disorders, reduced fertility and fecundity and illnesses such as testicular, prostate, uterine and cervical cancers later in life. This executive summary reviews effects of pre- and post-natal exposures on male and female reproductive health and provides a series of recommendations for advancing the field in the areas of research, policy, health care and community action.

Abstracts

Developmental Programming and Fetal Origins of Adult Disease

The DES Example

Prenatal exposure to diethylstilbestrol (DES), a synthetic estrogen and thus EDC, provides an unfortunate example of developmental programming. DES was given to U.S. pregnant women between 1938 and 1971 under the erroneous assumption that it would prevent pregnancy complications. In fact, in utero exposure to DES alters the normal programming of gene families, such as Hox and Wnt, that play important roles in reproductive tract differentiation. As a result, female offspring exposed to DES in utero are at increased risk of clear cell adenocarcinoma of the vagina and cervix, structural reproductive tract anomalies, infertility and poor pregnancy outcomes, while male offspring have an increased incidence of genital abnormalities and a possibly increased risk of prostate and testicular cancer. These observed human effects have been confirmed in numerous animal models which have also provided information on the toxic mechanisms of DES. Animal experiments have also predicted changes later found in DES-exposed humans, such as oviductal malformations, increased incidence of uterine fibroids and second-generational effects such as increased menstrual irregularities and possibly ovarian cancer in DES-granddaughters and increased hypospadias in DES-grandsons.

DES is but one example of how exposure to EDCs can disrupt developing organ systems and cause abnormalities, many of which only appear much later in life or in the subsequent generation, such as endometriosis, fibroids and breast, cervical and uterine cancer in women; poor sperm quality and increased incidence of cryptorchidism and hypospadias in men; and subfertility and infertility in men and women.

Reproductive Effects of Early Life Exposures in Females

Uterus Development and the Environment

Women exposed to DES in utero during critical periods of reproductive tract development developed several types of reproductive tract abnormalities, as well as an increased incidence of cervical-vaginal cancer later in life. Animal studies that simulate the human DES experience have since shown that exposure of the developing reproductive tract of CD-1 mice to DES imparts a permanent estrogen imprint that alters reproductive tract morphology, induces persistent expression of the lactoferrin and c-fos genes and induces a high incidence of uterine adenocarcinoma. Experiments in rats have shown exposure to DES during the critical window of uterine development leaves a hormonal imprint on the developing uterine myometrium in rats that were genetically predisposed to uterine leiomyoma, increasing the risk for adult uterine leiomyoma from 65% to greater than 90% and increasing tumor multiplicity and size. DES-induced developmental programming appears to require the estrogen receptor α, suggesting that signaling through this receptor is crucial for establishing developmental programming.

Sources

  • Full study (free access) : Proceedings of the Summit on Environmental Challenges to Reproductive Health and Fertility: Executive Summary, Fertility and sterility, NCBI PubMed, PMC2440710, 2009 Feb 1.
  • Featured image credit Kiệt Hí.
DES DIETHYLSTILBESTROL RESOURCES

Occurrence of tumours in the descendants of male prenatally exposed to DES

Multigenerational effects of DES have been reported through the paternal lineage

1992 Study Abstract

There is well documented evidence both in humans and in experimental animals that exposure to diethylstilbestrol (DES) during pregnancy results in an increased incidence of tumours in the progeny.

The increased cancer risk has been reported to persist in the second generation descendants of DES-exposed pregnant mice. In the present experiment, female mice of the CBA strain were treated at day 17 of pregnancy with 1 microgram/g body weight of DES.

The descendants of DES-treated mothers, described as F1DES, were mated among each other or with untreated animals.

  • The F1DES females were found to be sterile when mated with either F1DES or untreated males.
  • F1DES males were successfully mated with untreated females.
    • In the female offspring so obtained, but not in the male, a statistically significant increased incidence of tumours was observed, in particular of uterine sarcomas, and also of benign ovarian tumours and of lymphomas.

Sources

  • Occurrence of tumours in the descendants of CBA male mice prenatally treated with diethylstilbestrol, International journal of cancer, NCBI PubMed, PMID: 1728603, 1992 Jan.
  • Featured image credit Ousa Chea.
DES DIETHYLSTILBESTROL RESOURCES

The Role of Parental and Grandparental Epigenetic Alterations in Familial Cancer Risk

image of arental and Grandparental Epigenetic

Some epigenetic alterations that influence cancer risk are inherited through the germline from the DES-exposed to offspring and are observed in multiple DES generations of victims

2008 Study Abstract

Epigenetic alterations of the genome such as DNA promoter methylation and chromatin remodeling play an important role in tumorigenesis. These modifications take place throughout development with subsequent events occurring later in adulthood. Recent studies, however, suggest that some epigenetic alterations that influence cancer risk are inherited through the germline from parent to child and are observed in multiple generations. Epigenetic changes may be inherited as Mendelian, non-Mendelian, or environmentally induced traits. Here, we will discuss Mendelian, non-Mendelian, and environmentally induced patterns of multigenerational epigenetic alterations as well as some possible mechanisms for how these events may be occurring.

Diethylstilbestrol

One example of multiple generations in families showing effects of an environmental agent are daughters of mothers who were exposed to diethylstilbestrol (DES) during the first trimester.

The daughters show developmental abnormalities and an increased risk of developing a rare type of clear-cell adenocarcinoma. DES daughters also show a 2.5-fold increase in breast cancer risk after 40 years of age. To prove that this indeed is an inherited transgenerational effect, granddaughters and great granddaughters of the exposed mothers will need to show a DES phenotype. This analysis has not yet been completed.

Mouse studies have shown that the F2 generation from a DES-exposed pregnant female had strikingly similar effects as the F1 generation, including abnormal uterine development and uterine cancer. The proposed mechanism of action of DES is aberrant CpG methylation of key uterine cancer genes. The changes in CpG methylation may be stable throughout gametogenesis, providing insight into the transgenerational effects of DES.

Sources and more information
  • Full study (free access) : The Role of Parental and Grandparental Epigenetic Alterations in Familial Cancer Risk, Perspectives in Cancer Research, NCBI PubMed PMC4423451, 2008 Nov.
  • Epigenetics featured image credit NestleNutritionInstitute.
DES DIETHYLSTILBESTROL RESOURCES

Hsp90 and environmental impacts on epigenetic states

image of hsp90

A model for the trans-generational effects of diethylstibesterol on uterine development and cancer

2005 Study Abstract

Hsp90 is a chaperone for over 100 ‘client proteins’ in the cell, most of which are involved in signaling pathways. For example, Hsp90 maintains several nuclear hormone receptors, such as the estrogen receptor (ER), as agonist-receptive monomers in the cytoplasm.

In the presence of agonist, Hsp90 dissociates and the receptors dimerize, enter the nucleus and ultimately activate transcription of the target genes. Increasing evidence suggests that Hsp90 also has a role in modifying the chromatin conformation of many genes. For example, Hsp90 has recently been shown to increase the activity of the histone H3 lysine-4 methyltransferase SMYD3, which activates the chromatin of target genes. Further evidence for chromatin-remodeling functions is that Hsp90 acts as a capacitor for morphological evolution by masking epigenetic variation. Release of the capacitor function of Hsp90, such as by environmental stress or by drugs that inhibit the ATP-binding activity of Hsp90, exposes previously hidden morphological phenotypes in the next generation and for several generations thereafter.

The chromatin-modifying phenotypes of Hsp90 have striking similarities to the trans-generational effects of the ER agonist diethylstilbesterol (DES). Prenatal and perinatal exposure to DES increases the predisposition to uterine developmental abnormalities and cancer in the daughters and granddaughters of exposed pregnant mice.

In this review, we propose that trans-generational epigenetic phenomena involving Hsp90 and DES are related and that chromatin-mediated WNT signaling modifications are required. This model suggests that inhibitors of Hsp90, WNT signaling and chromatin-remodeling enzymes might function as anticancer agents by interfering with epigenetic reprogramming and canalization in cancer stem cells.

Sources and more information
  • Hsp90 and environmental impacts on epigenetic states: a model for the trans-generational effects of diethylstibesterol on uterine development and cancer, Human molecular genetics, NCBI PubMed PMID: 15809267, 2005 Apr.
  • Hsp90 pathway featured image credit robertanagourney.
DES DIETHYLSTILBESTROL RESOURCES

Neonatal acute myeloid leukemia in a DES grandchild infant

Neonatal acute myeloid leukemia in an infant whose mother was exposed to diethylstilboestrol in utero

Neonatal acute myeloid leukemia in an infant whose mother was exposed to diethylstilboestrol in utero

2009 Study Abstract

We report on an acute myeloid leukemia in a neonate whose mother was exposed to diethylstilboestrol in utero.

The newborn presented with leukemia cutis, hemorrhagic skin lesions, hyperleucocytosis and disseminated intravascular coagulation. A bone marrow examination confirmed the diagnosis of acute monocytic leukemia with a t(11;19) MLL-ELL fusion transcript. Chemotherapy was initiated but the child developed a bilateral pulmonary infection that led to fatal respiratory distress.

This case shows acute myeloid leukemia and the third pediatric leukemia reported after maternal diethylstilboestrol exposure.

Sources and more information
  • Neonatal acute myeloid leukemia in an infant whose mother was exposed to diethylstilboestrol in utero, Pediatric blood & cancer, NCBI PubMed PMID: 19405140, 2009 Aug.
  • Acute myeloid leukemia featured image credit omicsonline.
DES DIETHYLSTILBESTROL RESOURCES

Epigenetic alterations induced by in utero diethylstilbestrol exposure

image of Epigenetic alterations induced by in utero diethylstilbestrol exposure

Proposed model to explain an increase in breast cancer risk in daughters, and possibly granddaughters and great granddaughters, of mothers who took diethylstilbestrol during pregnancy

Gene expression can be altered as a consequence of mutations or epigenetic changes. In contrast to gene mutations within the DNA, epigenetic changes involve post-transcriptional modifications; that is, methylation of gene promoter regions, histone modifications, deposition of certain histone variants along specific gene sequences and microRNA (miRNA) expression. Although both changes are heritable, an important distinction between the two is that mutations are not reversible, but epigenetic modifications generally are.

Probably the most common mechanism of epigenetic gene silencing is methylation, and it might also be the most important. DNA methyltransferases (DNMTs) catalyze the methylation of genomic DNA by adding a methyl group (CH3) onto the 5-carbon of the cytosine ring within CpG dinucleotides. Histone modifications are complex, as they involve not just histone methylation but also acetylation, deacetylation and other post-translational changes. These modifications occur in the amino-terminal tails of histones and affect the ‘openness’ of the chromatin, which determines whether a gene is expressed or silenced (for example, acetylation allows transcription, while deacetylation represses transcription). Trimethylation of histone H3 at lysine K27 is catalyzed by the Polycomb group (PcG) protein enhancer of Zeste-2 (EZH2) and results in gene silencing. PcG/H3K27me3 interact with DNMTs, and together they establish and maintain silencing of PcG target genes. Over 2,000 different PcG target genes have been identified and they include some tumor suppressor genes. Many of the PcG target genes regulate cell fate, including apoptosis, proliferation and stem cell differentiation. As discussed in more detail below, methylation of PcG target genes is linked to increased breast cancer risk.

DNMTs may be key players in regulating histones and the entire epigenomic machinery, since DNA methylation events often precede histone modifications. Upregulation of DNMTs increases the expression of EZH2 and other polycombs; this may happen by DNMTs inducing methylation of non-coding miRNAs that target the polycombs.

We and others have observed that the expression of DNMTs is persistently altered in estrogen-regulated tissues following estrogenic exposures during early life. In utero exposure to DES is reported to increase the expression of DNMT1 in the epididymis and uterus . We found that DNMT1 expression is increased in the mammary glands of adult rat offspring of dams exposed to ethinyl estradiol during pregnancy. These changes provide a key regulatory layer to influence gene expression in the mammary gland and perhaps breast tumors of individuals exposed to DES or other estrogenic compounds in utero.

Promoter methylation

In utero DES exposure alters methylation patterns of several genes in estrogen’s target tissues, including Hox genes, c-fox, and Nsbp1, but it has not been studied whether changes in methylation patterns occur in the mammary gland. We have explored changes in methylation in the mammary glands of adult rats exposed in utero to the synthetic estrogen ethinyl estradiol using global sequencing approaches. Among the genes that exhibited increased promoter methylation were several PcG target genes, suggesting that a maternal exposure to synthetic estrogens during pregnancy causes long-lasting changes in the methylation of genes that regulate cell fate, including stem cell differentiation.

Histone modifications

As an increase in EZH2 expression in the mammary glands of mice exposed to DES in utero has been reported, histone modifications also seem to be influenced by maternal exposure to synthetic estrogens during pregnancy. Jefferson and colleagues recently investigated whether upregulation of lactoferrin and sine oculis homeobox 1 (Six1) in the uterus of adult mice exposed to DES neonatally is caused by histone modifications. Their data indicate that neonatal DES exposure induces changes during the early postnatal period in the expression of multiple chromatin-modifying proteins but these changes do not last to adulthood. However, alterations in epigenetic marks at the Six1 locus in the uterus were persistent. Similarly, changes in the methylation of Nsbp1 and expression of DNMTs in the uterus of DES-exposed offspring are different in the early postnatal period compared to adulthood. This suggests that some epigenetic alterations are further influenced by factors operating during postnatal development, such as a surge of estrogens and progesterone from the ovaries at puberty onset.

microRNAs

Maternal exposures during pregnancy have been found to induce persistent changes in miRNA expression in the offspring. miRNAs are short non-coding single-stranded RNAs composed of approximately 21 to 22 nucleotides that regulate gene expression by sequence-specific base-pairing with the 3’ untranslated region of target mRNAs. miRNA binding induces post-transcriptional repression of target genes, either by inducing inhibition of protein translation or by inducing mRNA degradation. Expression of many miRNAs is suppressed by estrogens. Although the effects of maternal DES exposure during pregnancy on miRNA expression in the offspring have not been investigated, it is known that many other manipulations, such as maternal low protein diet, alter miRNA patterns among the offspring. We recently found that in utero exposure to ethinyl estradiol lowers the expression of many of the same miRNAs in the adult mammary gland as are downregulated by E2 in MCF-7 human breast cancer cells. Since miRNAs can be silenced by methylation or as a result of increased PcG expression, and they target DNMTs, histone deacetylases and polycomb genes, the observed increase in DNMT expression, histone marks and EZH2 in the in utero DES-exposed offspring may be a result of epigenetic silencing of miRNAs that target them.

2014 Study Conclusions

In summary, women exposed to DES in utero are destined to be at an increased risk of developing breast cancer, and this risk may extend to their daughters and granddaughters as well. It is of critical importance to determine if the increased risk is driven by epigenetic alterations in genes that increase susceptibility to breast cancer and if these alterations are reversible.

Sources and more information
  • Full text (free access) : Maternal exposure to diethylstilbestrol during pregnancy and increased breast cancer risk in daughters, Breast Cancer Research, NCBI PubMed, PMC4053091, 2014 Apr 30.
  • Proposed model to explain an increase in breast cancer risk in daughters, and possibly granddaughters and great granddaughters, of mothers who took diethylstilbestrol during pregnancy featured image credit PMC4053091/figure/F1.
DES DIETHYLSTILBESTROL RESOURCES

Estrogen Imprinting : When Your Epigenetic Memories Come Back to Haunt You

image of Estrogen Imprinting

Persistent hypomethylation in the promoter of nucleosomal binding protein 1 (Nsbp1) correlates with overexpression of Nsbp1 in mouse uteri neonatally exposed to diethylstilbestrol or genistein

2008 Study Abstract

The concept of developmental programming by steroid hormones has been around for decades, and may be best understood in the brain, where early-life estrogens and androgens feminize and masculinize behavior. Other end organs, such as the liver, are also programmed by steroids during early development, leading to important and necessary sexual dimorphisms in structure and function. In addition to physiological programming or imprinting by steroids, it is well established that the reproductive tract, as well as other structures, can be reprogrammed by abnormal or inadvertent steroid exposures during early life. This phenomenon is best understood by extensive studies on the synthetic estrogen, diethylstilbestrol (DES). Beginning in the early 1950s, DES was prescribed to pregnant women to prevent spontaneous abortions, and its use has been estimated at 8 million women worldwide. However, DES utilization during pregnancy was discontinued in the United States in 1972 and worldwide by 1979 when it was discovered that maternal DES usage was linked to an increased incidence of vaginal clear-cell adenocarcinoma in DES-exposed daughters. Since that time, intrauterine DES exposure has resulted in a multitude of complications in female and male offspring, including T-shaped uteri, uterine fibroids, hypospadias, subfertility and infertility, early menopause, immune system disorders, psychosexual disturbances, and increased breast and testicular cancer risk. Although some adverse effects appear relatively early, such as vaginal cancers in young women, others are emerging as the exposed population ages, suggesting lifelong memory of early estrogen levels by cells and organs. In some instances these delayed responses may be triggered by secondary hormonal events such as onset of puberty or changing hormone levels with aging, which greatly complicates the picture. Furthermore, there is new evidence for transgenerational DES effects transmitted to DES granddaughters, the third generation, which indicates that adverse sequelae may be with us for some time.

Concern regarding fetal and neonatal exposure to estrogenic agents also continues today due to a variety of real-life circumstances that include unintended continuation of estradiol-containing birth control pills during the first months of an undetected pregnancy (estimated at > 1 million annually), exposure (sometimes daily) to environmental estrogens (e.g. bisphenol A, methoxychlor, dichlorodiphenyltrichloroethane or DDT), and consumption of high levels of phytoestrogens during pregnancy or in infant formula (e.g. soy with the isoflavone genistein), all of which have shown a variety of adverse effects in animal models . Although there is compelling evidence that soy or genistein ingestion can be chemoprotective and beneficial, as with so many things in life, this appears to depend on timing. Prepubertal genistein intake reduces breast cancer risk in humans and rodent models, whereas fetal exposure, at least in rat models, can increase risk if not accompanied by lifetime genistein intake. This serves to emphasize the subtle influences of adult life experiences on disease manifestation from early-life exposures. Together, these and a multitude of other studies indicate that early-life estrogen exposure fits the expanding paradigm of the developmental origins of human adult disease.

Over the years, researchers have conducted extensive studies on developmental reprogramming, also referred to as developmental estrogenization or estrogen “imprinting,” using rodent models that largely recapitulate, and in many instances predict, the adverse effects seen in DES-exposed humans. A major research effort during this time has been to identify the molecular underpinning whereby cells and tissues “remember” early-life estrogen exposures long after hormone withdrawal. In the late 1990s, McLachlan and colleagues provided the first clue that the process may have an epigenetic basis when they described a permanent change in uterine lactoferrin gene methylation as a function of fetal DES exposure. They went on to propose that developmental reprogramming by early-life estrogenic exposures may be mediated by altered epigenetic memory. As in lower species such as frogs in which early estrogen treatment changes gene methylation and alters the response of the vitellogenin gene to hormones later in life, they also speculated that the first hormonal experience may epigenetically alter the set point for the later hormone response in mammals. A few studies have since substantiated that epigenetic mechanisms underlie estrogen imprinting by demonstrating that early-life estrogens permanently alter DNA methylation and gene expression of specific genes in the uterus and prostate gland, which are associated with altered susceptibility to adult pathology in those tissues.

In the present issue of Endocrinology, Tang et al.  identify additional layers of complexity to epigenetic reprogramming that have not been previously appreciated. Earlier work in the laboratory of Newbold et al. determined that developmental DES resulted in a high incidence of uterine adenocarcinoma in the murine model, which could be predictive of cancers not yet observed in DES daughters. In partnership with the laboratory of Newbold et al., Tang et al.  used an unbiased approach of methylation sensitive restriction fingerprinting to identify altered DNA methylation patterns in prepubertal, adult, and aged mouse uteri that had been exposed during early life to high-dose or low-dose DES, or to genistein at doses consistent with human dietary intake. They identified 14 genes whose methylation patterns shift as a result of neonatal DES or genistein treatments, several of which were previously unrecognized participants in developmental estrogenization of this tissue. Thus, the present data further substantiate the original hypothesis and findings of McLachlan and colleagues. Tang et al.  went on to thoroughly characterize the altered DNA methylation at specific CG sites in the promoter of one gene in particular, nucleosomal binding protein 1 (Nsbp1), and directly correlated the changes with altered gene expression. This gene is particularly significant because Nsbp1 is a nucleosome-core-particle binding protein that plays a role in chromatin remodeling, which itself underpins a higher order epigenetic process. Nsbp1 is structurally similar to the conserved functional domains of the high-mobility group proteins, HMG 14/17, that interact with nucleosomes, transiently destabilize chromatin, increase access to DNA, and enhance gene transcription at targeted sites. Thus, modifications in Nsbp1 methylation and expression by early estrogens have the potential to affect higher order chromatin structure that, in turn, may alter expression of many genes and possibly drive oncogenesis. Of course, this awaits confirmation by future experiments that directly address this possibility. Nonetheless, these novel findings provide important evidence that epigenetic reprogramming by early-life estrogens may involve multiple epigenetic pathways that combine to initiate disease later in life.

However, the real novelty and significant implications of the study by Tang et al. are not in the aforementioned results, as important as they may be, but in the demonstration that epigenetic reprogramming itself involves a two-step process. Original studies by Newbold et al. showed that the onset of uterine adenocarcinoma in neonatal DES-exposed mice required a secondary hormonal “push” by pubertal steroids because prepubertally ovariectomized mice did not develop cancers. The study by Tang et al.  now shows that this is a direct function of specific DNA methylation changes induced by the secondary pubertal hormones that occur only in mice that were first exposed neonatally to DES or genistein. The authors found that the Nsbp1 promoter is moderately methylated, and the gene is expressed in uteri during prepubertal development in control animals, and becomes hypermethylated and largely silenced by early adulthood. This suggests that the role for Nsbp1 in the uterus is normally restricted to development. When mice were given DES or genistein immediately after birth, the Nsbp1 promoter became hyper or hypomethylated in a treatment-specific manner that led to decreased or increased Nsbp1 expression before puberty. This can be considered the first epigenetic modification. If the mice were prepubertally ovariectomized, these divergent methylation patterns persisted through aging. However, if the mice were allowed to undergo puberty with its secondary estradiol exposure, the Nsbp1 promoter was radically shifted to a hypomethylated state in all neonatal estrogen-exposed uteri. Importantly, this secondary epigenetic modification resulted in overexpression of Nsbp1 throughout life, which correlates with the onset of uterine adenocarcinoma in this model . Thus, in addition to overt epigenetic memories determining our fate, it appears that repressed epigenetic memories are also looming in the background, only to be epigenetically triggered by future events. These new findings stress the importance of secondary events in life that are necessary to uncover the initial cryptic modifications.

A “second hit” model has long been applied to genetic changes and the ontogeny of cancer . It now appears that a parallel two-step concept may apply to epigenetic alterations as well. A somewhat similar scenario was previously shown in Drosophila. Flies with a Krüppel gene mutation (Krif−1) exhibited a specific phenotypical outcome (eye outgrowth) only if they were “epigenetically sensitized” by chromatin modification. The authors concluded that an otherwise cryptic genetic variation can be modified epigenetically to unmask a predisposed phenotype. Ruden et al.  went on to propose further that a similar mechanism may be responsible for the transmission of early-life DES effects on uterine development and cancer. The study by Tang et al.  for the first time identifies molecular evidence to support this proposal. Moreover, the aforementioned hypothesis can now be expanded to state that cryptic epigenetic marks may be further epigenetically modified to unmask a predisposed phenotype. This begs the question whether the complexity of lifetime epigenetic interactions might be the basis for individual variability to early-life exposures or even to differential responsiveness to therapeutic interventions.

There are many things that remain to be done, not the least of which is connecting the dots between the epigenetically altered genes and the disease at hand. This is true not only for the uterus, but for other cancers (breast, testicular, prostate) and disease states that result from estrogen imprinting. Might there be other secondary triggers for repressed epigenetic memories aside from just hormones? Can we formulate an “epigenetic fingerprint” consisting of multiple genes that may be similar or unique for the separate estrogenic compounds, end organs, or second hits? If so, perhaps these could be used in the future for early detection of altered disease susceptibility as a result of known or unknown early-life exposures. Perhaps they could even be used to devise novel interventions. Clearly, we have only just begun.

Sources and more information
  • Estrogen Imprinting: When Your Epigenetic Memories Come Back to Haunt You, Endocrinology, Endocrine Society, Oxford University Press Volume 149, Issue 12, Pages 5919–5921, 1 December 2008.
  • Estrogen Imprinting featured image credit dennis43.
DES DIETHYLSTILBESTROL RESOURCES

Do breast tissue of women exposed in utero to DES exhibit genetic abnormalities ?

image of breast-neoplasms

In utero exposure to diethylstilbestrol (DES) does not increase genomic instability in normal or neoplastic breast epithelium

2006 Study Abstract

BACKGROUND
In 1992, the National Cancer Institute (NCI) established the Continuation of Follow-Up of DES-Exposed Cohorts to study the long-term health effects of exposure to diethylstilbestrol (DES). Genetic effects on human breast tissue have not been examined. The authors investigated whether breast tissue of women exposed in utero to DES might exhibit the genetic abnormalities that characterize other DES-associated tumors.

METHODS
Subjects enrolled in the NCI Cohort were queried about breast biopsies or breast cancer diagnoses. Available tissue blocks were obtained for invasive cancers (IC), in situ cancers (CIS), or atypical hyperplasia (AH). Exposure status was blinded, lesions were microdissected, and their DNA was analyzed for microsatellite instability (MI) and loss of heterozygosity (LOH), or allele imbalance (AI), at 20 markers on 9 chromosome arms.

RESULTS
From 31 subjects (22 exposed, 9 unexposed), 273 samples were analyzed (167 normal epithelium, 16 AH, 30 CIS, 60 IC). Exposed and unexposed subjects exhibited no differences in breast cancer risk factors or demographic characteristics, except for age at diagnosis (exposed vs. unexposed: 43.2 vs. 48.8 years of age, P = .02). The authors found that MI was rare and that AI was common, with frequencies consistent with previous reports. The global age-adjusted relative rate (RR) of AI was 1.3, 95% CI = 0.8-2.4. No statistically significant associations were observed after adjustment for risk factors or after stratification by histology or by chromosome arm.

CONCLUSIONS
In utero DES exposure does not appear to significantly increase genomic instability in breast epithelium, as measured by MI and AI. Breast tissue may respond differently from that of the reproductive tract to in utero DES exposure. Consequences of in utero DES exposure on the breast may be mediated by proliferative effects of estrogen.

Sources and more information
  • In utero exposure to diethylstilbestrol (DES) does not increase genomic instability in normal or neoplastic breast epithelium, Cancer, NCBI PubMed PMID: 16998936, 2006 Nov.
  • Full text: wiley: DOI: 10.1002/cncr.22223,
    Cancer, Volume 107, Issue 9, pages 2122–2126, 1 November 2006.
  • Breast neoplasms featured image credit vmshashi.
DES DIETHYLSTILBESTROL RESOURCES

Endocrine disruptors and psychiatric disorders in children exposed in utero

Evidence from a French cohort of 1002 prenatally exposed children and the example of diethylstilbestrol (DES) as a model for PE study

2016 Study Abstract

Aim of the work In utero diethylstilbestrol (DES) exposure has been demonstrated to be associated with somatic abnormalities in adult men and women as well as shown for its trangenerationnal effect.

Endocrine disruptors and psychiatric disorders in children exposed in utero: evidence from a French cohort of 1002 prenatally exposed children and the example of diethylstilbestrol (DES) as a model for PE study, Conference Paper, Research Gate, publication/293333931, January 2016.

Researchers Marie-Odile Soyer-Gobillard and Charles Sultan, image credit lamarseillaise.

Conversely, the data are contradictory regarding the association with psychological or psychiatric disorders during adolescence and adulthood.

This work was designed to determine whether prenatal exposure to DES and/or Ethinyloestradiol affects brain development and whether it is associated with psychiatric disorders in male and female adolescents and young adults.

Methods
HHORAGES Association, a national patient support group, has assembled a cohort of 1280 women (spontaneous testimonies communicated after various informations) who took DES and/or EE during pregnancy. We obtained responses to detailed questionnaire from 529 families, corresponding to 1182 children divided into three groups:

  1. Group 1 (n=180): firstborn children without DES treatment,
  2. Group 2 (n=740): exposed children,
  3. and Group 3 (n=262): children born after a previous pregnancy treated by DES and/or EE.

Key Results
No psychiatric disorders were reported in Group 1. In Group 2, the incidence of psychiatric disorders was drastically elevated (83.8%), and in Group 3, the incidence was still elevated (6.1%) compared with the general population.

Total number of psychological/psychiatric disorders among the 982 (1002-20 stillborns) DES-exposed and post-DES children
Among the 982 DES-exposed adolescents (1002-20 stillborns) (Group 2) and post-DES adolescents (Group 3):

  • Behavioral disorders, violence, aggressiveness, obsessive-compulsive disorders (n=110) (11.2%)
  • Eating disorders (n=83) (8.4%)
  • Schizophrenia (n=171) (17.4%)
  • Depression, bipolar disorders, anxiety (n=257) (26.2%)
  • Suicides (n=33) (3.4%)
  • Suicide attempts (n=642) (65.4%)

Conclusions
This work demonstrates that prenatal exposure to DES and/or EE is associated with a high risk of psychiatric disorders in adolescence and adulthood. Molecular epigenetic mechanisms subtending these toxic effects are in progress.

More DES DiEthylStilbestrol Resources

Behavioral and Somatic Disorders in Children Exposed in Utero to Synthetic Hormones

A Testimony-Case Study in a French Family Troop

Using a familial case control study, Marie-Odile Soyer-Gobillard – former director emeritus at the CNRS (French National Center for Scientific Research) – and Charles Sultan show that there are serious effects on the psychological and physical health of the descendants of women treated with synthetic hormones during their pregnancy: psychiatric illnesses are often found associated with somatic disorders which are well known to be the DES and EE signature.

Behavioral and Somatic Disorders in Children Exposed in Utero to Synthetic Hormones: A Testimony-Case Study in a French Family Troop, Endocrinology and Metabolism, intechopen, DOI: 10.5772/48637, October 3, 2012.

Synthetic hormones, acting as endocrine disturbers, are toxic for humans, especially for pregnant women and their children, probably partly in relation with their toxic degradation status.

In all cases girls suffered more than boys either of somatic and/or psychiatric disorders due to the estrogen receptor alpha or beta concentration higher in female fetus than in male. It is also clear that in all the families most of the exposed children are ill while quite the unexposed are not.

2012 Study Overview

  • Materials and methods: Gathering questionnaires and the evidence
  • Results / Data Analysis / Discussion
  • A multi-generational effect? By what mechanism?
  • Conclusion

A multi-generational effect? By what mechanism?

Multi-generational carcinogenesis studies were realized on mice after diethylstilbestrol impregnation with impressive and undisputable results. Our observations presented in this present work from the French HHORAGES troop raises the question of the mechanism through with synthetic hormones as DES cause either psychiatric disorders in exposed children and/or adverse effects in subsequent generations. Since Abdomaleky et al  concluded that modulation of gene-environment interactions may be trough DNA methylation, authors put forward hypothesis that DES-induced changes in epigenetic background and alteration of DNA methylations could be significant factors. The pregnant mother’s exposure to DES at very early neurodevelopment time and/or at time of sex determination would appear to be sufficient to alter the remethylation of neuron precursors and/or of the fetus germ line. Only a few third-generation children suffering psychiatric illness are mentioned in testimonies. This is understandable because third generation exposed children are still too young (excepted in some cases) to present psychiatric disorders as schizophrenia which is not the case for hypospads that are detectable from birth in male children and grand-children. Work is already under way concerning the gene X environment DES impact hypothesis by comparing DES and EE exposed children, various genetic and epigenetic factors to those of mother and unexposed children of the same family as studied by the INSERM team U796 in collaboration with the HHORAGES families.

Conclusions

In the present familial case control study, we have shown that there are serious effects on the psychological and physical health of the descendants of women treated with synthetic hormones during their pregnancy: psychiatric illnesses are often found associated with somatic disorders which are well known to be the DES and EE signature. Synthetic hormones, acting as endocrine disturbers, are toxic for humans, especially for pregnant women and their children, probably partly in relation with their toxic degradation status. In all cases girls suffered more than boys either of somatic and/or psychiatric disorders due to the estrogen receptor alpha or beta concentration higher in female fetus than in male. It is also clear that in all the families most of the exposed children are ill while quite the unexposed are not.

So what now? As the precautionary principle was not applied in the past, and still is not in force today, and since the lessons of recent history were never taken into account , it is our common duty to repair the damage by supporting the devastated families, and by pursuing research work on the observation of trans-generational effects. Such effects are already highlighted by the demonstration that cancers are observed even in the fourth generation in mice . According to the Skinner’s mini review “the ability of an environmental compound (as DES or EE) to promote the reprogramming of the germ-line appears to be the causal factor in the epigenetic transgenerational phenotype,” we observed an increase of the genital malformations in the third generation in male infants whose mothers were treated with xenoestrogens. In the HHORAGES troop, DES and EEexposed infants are already pointed out as bodily and/or psychologically impaired after their mothers were treated with clomifene citrate (an ovulation stimulator previously used for IVF-type medically assisted procreation). Another concern is the putative future effect of ethinylestradiol containing oral estrogenic contraception on future generations due to its lipophily after its metabolization and its future release in fetus through the placenta. As for the demonstration of the causality link within the HHORAGES troop, will we have to wait for a large-scale epidemiological study, or are we allowed to think that the impressive figures that we are publishing in this work are not merely random? The only way now is to respect absolutely the precautionary principle and to delete completely or to give the less possible toxic (synthetic) hormone medication: for example Clavel Chapelon and her Endogenous Hormones and Breast Cancer Collaborative Group in Villejuif informed that natural hormone as micronized (natural) progestin associated with estrogens (synthetic alas!) is more often ordered for SHT (Substitutive Hormonal Treatment) in order to avoid breast cancer. Unfortunately, she said also that in the contrary the same SHT is not recommended to avoid the endometrium cancer …

As Newbold et al said after they reviewed the damages caused by DES ,

“only new advances in the knowledge of genetic and epigenetic mechanisms of the disruptions of fetal development will enable us to be aware of the risks entailed by the other estrogenic disruptors which are present around us and in ourselves, even at very low doses”

, whilst Theo Colborn insists on the fact that the foetus cannot be protected against endocrine disruptors, whatever they may be, except at zero level.

Click to download the complete PDF.

More DES DiEthylStilbestrol Resources