DES Implications for the Third Generation

image of Grandson

The Health Effects of Diethylstilbestrol Revisited

Abstract

“… DES has been associated with increased risk of reproductive tract tumors in third-generation mice, that is, mice whose grandmothers were exposed to DES. These tumors have included uterine adenocarcinomas and sarcomas and benign ovarian tumors in females as well as tumors in the rete testis in males.

By identifying persons with known exposure, as well as their children, potential participants for studies of the long-term effects of DES could also be identified. With appropriate samples and further research, greater knowledge of the health effects of DES on the children and grandchildren of women who took DES could be gained. Persons who may have been exposed to DES may find national websites and organizations (helpful to access current research and health information as it becomes available.”

Sources

  • The health effects of diethylstilbestrol revisited, Journal of obstetric, gynecologic, and neonatal nursing : JOGNN, NCBI PubMed, PMID: 16020417, 2005 Jul-Aug.
DES DIETHYLSTILBESTROL RESOURCES

Increased Risk of Cancer in DES Grandsons and Granddaughters

Offspring of women exposed in utero to diethylstilbestrol (DES): a preliminary report of benign and malignant pathology in the third generation, 2008

Abstract

BACKGROUND
Animal studies suggest that prenatal exposure to the synthetic estrogen diethylstilbestrol (DES) causes epigenetic changes that may be transmitted to the next generation. Specifically, these studies show an elevated incidence of reproductive tumors in the female offspring of prenatally-exposed mice.

METHODS
We assessed cancer and benign pathology diagnoses occurring in the offspring of women whose prenatal exposure to DES (or lack of exposure) was verified by medical record. Our data arose from 2 sources: the mothers’ reports of cancers occurring in 8216 sons and daughters, and pathology-confirmed cancers and benign diagnoses self-reported by a subset of 793 daughters.

RESULTS
Although statistical power is limited, our data are consistent with no overall increase of cancer in the sons or daughters of women exposed in utero to DES. Based on pathology-confirmed diagnoses reported by the daughters, we saw no association between DES and risk of benign breast disease or reproductive tract conditions. Based on 3 cases, the incidence of ovarian cancer was higher than expected in the daughters of women exposed prenatally to DES.

CONCLUSIONS
Our data do not support an overall increase of cancer risk in the sons or daughters of women exposed prenatally to DES, but the number of ovarian cancer cases was greater than expected. While preliminary, this finding supports continued monitoring of these daughters.

Third-Generation Cohort

In 2001, the NCI assembled the third-generation cohort, consisting of the adult daughters (≥18 years of age) of DES-exposed and unexposed second-generation women.37 A review of parity records at all 5 study centers identified 763 exposed and 577 unexposed mothers of 966 exposed and 815 unexposed age-eligible daughters. About half of the mothers, 414 (54%) of the exposed and 297 (52%) of the unexposed, gave permission to contact 515 (53%) exposed and 383 (47%) unexposed daughters. The questionnaires, which queried daughters for hormonal and reproductive information, screening histories, and medical events (including gynecologic biopsies, breast biopsies, and cancer diagnoses), were returned by 793 (88%) of 898 daughters, including 463 (90%) exposed and 330 (86%) unexposed. Pathology reports were obtained to verify self-reported diagnoses and biopsies. A study-related review of histology slides confirmed 1 of 2 reported cases of borderline ovarian cancer. Slides were unavailable for the second case, which involved metastatic disease.

The confirmation of cancers occurring in the subset of adult daughters participating in the third-generation study was excellent. Of the 8 self-reported cancers, 7 (5 exposed, 2 unexposed) were confirmed by pathology; consent was not obtained to confirm a melanoma reported by an unexposed woman. For other conditions, confirmation of benign biopsies was reasonably good, generally exceeding 60%.

DES Follow-up Study Summary

Studies have shown a slightly increased risk of breast cancer in women who were given Diethylstilbestrol (DES) while they were pregnant. Their daughters, who were exposed to DES prenatally (before they were born), have an elevated risk of reproductive tract conditions, including a rare vaginal cancer. A question now being studied is whether DES health effects can be passed from the prenatally exposed women to their offspring (intergenerational transmission).

Studies in mice suggest that intergenerational transmission of DES health effects may be possible. Recent evidence indicates that prenatal exposure to DES may cause changes in the behavior of genes that influence hormones and the development of the female reproductive tract. These changes in gene behavior may be passed on to the next generation. Evidence for intergenerational transmission comes from mouse studies showing a higher number of reproductive tract tumors in the daughters of prenatally exposed female mice. We used the DES Follow-up Study data to assess whether cancer was more common in the offspring of women who were prenatally exposed to DES. Cancers affecting these offspring (the third generation) were identified using two approaches. First, we asked women participating in the DES Follow-up Study to report cancers diagnosed in their 8,216 third generation sons and daughters. Second, we asked 793 third generation daughters participating in the Third Generation Study to tell us about their cancers. We also asked the third generation daughters to tell us about their reproductive tract and breast biopsies. Next we confirmed the reported biopsies and cancers by checking the medical records of these third generation daughters.

Our results did not show an overall increase of cancer in the sons or in the daughters of prenatally DES-exposed women. However, based on only three cases, the number of ovarian cancers was higher than expected in the daughters of women exposed prenatally to DES. Because of the small number of cases, this result must be considered preliminary. The association may be a chance finding or may be due to the way in which the data were reported or collected. We did not find an association between DES and benign breast disease or reproductive tract conditions, but most of the women are too young for a meaningful assessment of these outcomes. Further follow-up is needed to assess whether prenatal DES exposure can affect the third generation in humans.

Sources

  • Full study (free access) : Offspring of Women Exposed In Utero to Diethylstilbestrol (DES): A Preliminary Report of Benign and Malignant Pathology in the Third Generation, Epidemiology doi: 10.1097/EDE.0b013e318163152a, March 2008.
  • Featured image credit oaks.journals.
  • NCIDES Follow-up Study Published Papers.
DES DIETHYLSTILBESTROL RESOURCES

Birth Defects in the Sons and Daughters of Women who were Exposed in utero to Diethylstilbestrol (DES)

Possible association between the DES mothers exposure and birth defects in DES grandsons, DES granddaughters

2010 Study Abstract

Background
Prenatal exposure to diethylstilbestrol (DES) is associated with adverse health outcomes, including anatomic anomalies of the reproductive tract in women and of the genitourinary tract in men. The mouse model, which replicates many DES-related effects seen in humans, suggests that prenatal DES exposure causes alterations that may affect the next generation of offspring.

Methods
Women participating in a large multi-center study of prenatal DES exposure were asked to report birth defects occurring among 4,029 sons and 3,808 daughters (i.e., the third generation). A subcohort of 793 third generation daughters were also queried for birth defects. We used logistic regression models to generate odds ratios and 95% confidence intervals for the association between prenatal DES exposure in the mother and birth defects in the offspring.

Results
Based on the mothers’ reports, overall birth defects were elevated in the sons (OR = 1.53; 95% CI = 1.04, 2.23) and in the daughters (OR = 2.35; 95% CI = 1.44, 3.82). Most estimates of association were imprecise, but daughters appeared to have an excess of heart conditions (OR = 4.56; 95% CI = 1.27, 16.34.

Conclusions
Our data suggest a possible association between the mother’s prenatal DES exposure and birth defects in their offspring, particularly in daughters. We cannot, however, rule-out the possible influence of reporting bias. In particular, the exposed daughters’ elevated risk of cardiac defects may be due to the underreporting of these conditions by unexposed mothers.

Sources

  • Birth Defects in the Sons and Daughters of Women who were Exposed in utero to Diethylstilbestrol (DES), International journal of andrology, NCBI PubMed PMC2874639, 2010 April.
  • Featured image credit Nathan Dumlao.
DES DIETHYLSTILBESTROL RESOURCES

Examination of multigenerational transmission of environmental associations

Toward an Emerging Paradigm for Understanding Attention-Deficit/Hyperactivity Disorder and Other Neurodevelopmental, Mental, and Behavioral Disorders

2018 Study Abstract

In Association of Exposure to Diethylstilbestrol During Pregnancy With Multigenerational Neurodevelopmental Deficits, Kioumourtzoglou et al use an approach that is as important as it is underused: an examination of multigenerational transmission of environmental associations. That approach may be the most important from an epidemiological perspective. They report that pollutant exposure to grandparents conveys a 30% increase in risk of ADHD in grandchildren. The findings are novel and contribute to this emerging shift in the understanding of mental and behavioral disorders such as ADHD. The size of the association, similar to many other concurrent risk factors for ADHD, is striking.

Although, as the authors note, the dosages of everyday individual environmental pollutants are generally lower (in developed countries at least) than the dosages of diethylstilbestrol they studied, today’s population is exposed to hundreds of poorly studied, neurodevelopmentally or hormonally active compounds, the interactions among which are unknown. Thus, the actual associations today are difficult to quantify.

The limitations in this study should not be overlooked—genetic associations were not able to be examined (so a genotype-environment correlation might partially account for findings), causality could not be evaluated because of the absence of F1 siblings, and ADHD assessment is limited in population studies. Their finding of a first trimester bias in the association, in particular, should be interpreted very cautiously; the incidence of ADHD in the second, third, and first trimester exposures were all higher than the unexposed group, and the statistical power to detect between-trimester associations was low. As the authors appropriately noted, further work on trimester-specific associations will be of interest. Finally, an epigenetic transmission is not the only possibility (because of third-generation oocyte exposure, as the authors noted), although epigenetic transmission by neuroactive chemicals to the third generation is demonstrated in nonhuman animals.

Sources

  • Toward an Emerging Paradigm for Understanding Attention-Deficit/Hyperactivity Disorder and Other Neurodevelopmental, Mental, and Behavioral Disorders, JAMA Pediatrics doi:10.1001/jamapediatrics.2018.0920, July 2018.
  • Featured image credit Jason Leung.
DES DIETHYLSTILBESTROL RESOURCES

Increased breast cancer risk in DES daughters, granddaughters and great granddaughters

The effects of maternal diethylstilbestrol exposure are not limited to the F1 generation

2014 Study Abstract

The idea that susceptibility to breast cancer is determined not only through inherited germline mutations but also by epigenetic changes induced by alterations in hormonal environment during fetal development is gaining increasing support. Using findings obtained in human and animal studies, this review addresses the mechanisms that may explain why daughters of mothers who took synthetic estrogen diethylstilbestrol (DES) during pregnancy have two times higher breast cancer risk than women who were not exposed to it. The mechanisms likely involve epigenetic alterations, such as increased DNA methylation and modifications in histones and microRNA expression. Further, these alterations may target genes that regulate stem cells and prevent differentiation of their daughter cells. Recent findings in a preclinical model suggest that not only are women exposed to DES in utero at an increased risk of developing breast cancer, but this risk may extend to their daughters and granddaughters as well. It is critical, therefore, to determine if the increased risk is driven by epigenetic alterations in genes that increase susceptibility to breast cancer and if these alterations are reversible.

Gene expression can be altered as a consequence of mutations or epigenetic changes. In contrast to gene mutations within the DNA, epigenetic changes involve post-transcriptional modifications; that is, methylation of gene promoter regions, histone modifications, deposition of certain histone variants along specific gene sequences and microRNA (miRNA) expression. Although both changes are heritable, an important distinction between the two is that mutations are not reversible, but epigenetic modifications generally are.

Developing germ cells undergo epigenetic erasure when they, as primordial germ cells, enter into the fetal gonads around embryonic day 10 to 11 (in mice and rats), and then undergo gender-specific reprogramming as germ cells. It is now clear that reprogramming of these cells is susceptible to modifications caused by changes in fetal hormonal environment, such as resulting from an exposure to DES or other endocrine disruptors. Consequently, these exposures can leave a permanent biochemical footprint on the genome of the F1 generation germ cells, and this change may be inherited by the F2 generation germ line and several subsequent generations.

Some researchers have begun to investigate whether the effects of maternal DES exposure during pregnancy extend to the third generation in humans. Although there is no evidence that DES granddaughters have cervical and ovarian abnormalities similar to DES daughters, there is evidence that they may have more menstrual irregularities and a higher rate of infertility than non-exposed granddaughters. In addition, DES granddaughters may have a slightly higher risk of ovarian cancer. The granddaughters are still too young to assess whether they might also be at an increased risk of developing breast cancer.

Millions of women in the US, Europe and Australia have been exposed to DES in the womb, and consequently exhibit about a two times higher breast cancer risk than unexposed women. The increase in risk may not be limited to the DES-exposed daughters, but could also increase breast cancer risk in granddaughters and great granddaughters. Such outcome would be consistent with the findings we obtained in studies using a synthetic estrogen ethinyl estradiol (EE2). If DES has similar effects to ethinyl estradiol on the transgenerational increase in breast cancer risk, it is urgent to find ways to stop the cycle of inheritance, and also prevent breast cancer in DES-exposed granddaughters and great granddaughters.

To achieve this goal, we need to understand how maternal DES exposure during pregnancy increases a daughter’s breast cancer risk. A plausible model is proposed in feature image. It is evident from studies done in animal models that in utero DES exposure induces epigenetic changes in reproductive tract tissues and the breast. DES exposure might also have induced epigenetic changes in primordial germ cells and consequently germ cells, and further be detectable in the somatic cells in granddaughters and great granddaughters. We are not aware of any study that has compared epigenetic changes in germ cells and the next generation somatic cells in individuals exposed to DES or other endocrine disruptors in utero. Second, we should investigate whether the transgenerational increase in breast cancer risk can be prevented with drugs that reverse epigenetic modifications. Our preliminary studies in mice suggest that this is achievable in daughters by using the well-tolerated and non-toxic histone deacetylase inhibitor valproic acid and DNMT inhibitor hydralazine. However, whether these compounds also prevent an increase in granddaughters and great granddaughters in experimental models remains to be investigated.

In summary, women exposed to DES in utero are destined to be at an increased risk of developing breast cancer, and this risk may extend to their daughters and granddaughters as well. It is of critical importance to determine if the increased risk is driven by epigenetic alterations in genes that increase susceptibility to breast cancer and if these alterations are reversible.

Sources

  • Maternal exposure to diethylstilbestrol during pregnancy and increased breast cancer risk in daughters, Breast Cancer Research, NCBI PubMed PMC4053091, 2014 Apr 30.
  • Proposed model to explain an increase in breast cancer risk in daughters, and possibly granddaughters and great granddaughters, of mothers who took diethylstilbestrol during pregnancy : featured image credit PMC4053091/figure/F1.
DES DIETHYLSTILBESTROL RESOURCES

Effects of DES in a Third Generation

Exposure to Diethylstilbestrol during Sensitive Life Stages: A legacy of heritable health effects

2013 Selected Abstracts

Walker and Haven predicted that “if the high intensity of DES multigenerational carcinogenicity seen in mice is applicable to the human population, this is a health problem of major proportions.” They go on to say that it “could take over 50 years” to detect the effects in future generations, due to the length of time required for diseases such as cancer to manifest. It is predicted that cross-generational responses to DES exposure are possible due to epigenetic changes in the DNA and that the “germ cell pool could have become massively contaminated”. For example, early exposure to EDCs, like DES, is thought to reprogram mouse female reproductive tract development and affect how the reproductive tract responds to endogenous estrogens later in life. They suggest that “environmental estrogens may be more potent than previously suspected, due to synergistic action from concurrent exposures.”

The studies on the cohort of men (grandsons) and women (granddaughters) whose mothers were exposed prenatally to DES (grandchildren had no direct exposure) are limited as they are just beginning to reach the age when relevant health problems can be studied. Studies that have been performed contain preliminary data, as the power is low. Therefore, the main sources of information for third generation effects are rodent studies. In general, multi-generational mouse studies have shown an increased susceptibility to tumor formation in the third generation which suggests that DES grandchildren are also at an increased risk for cancer.

Granddaughters

Currently there are no human studies that definitively show any adverse effects of DES for the third generation of females. A small cohort study of 28 DES granddaughters found no abnormalities in the lower genital tract and no cases of CCA. These results led authors to conclude that third generation effects were unlikely even after they acknowledged that the number of participants was too small and the women were too young for the findings to have any real significance.

Multigenerational rodent studies, as a primary source for information on the effects of DES exposure, disagree with those preliminary findings in humans. Although severe effects of DES were apparent in the first round of CD-1 mouse offspring (second generation), the third generation did not exhibit the same subfertility, regardless of exposure timing or dose. However, these studies have found an increased susceptibility to tumor formation in the third generation. Aged third generation female mice had increased risks for uterine cancers, benign ovarian tumors, and lymphomas. One study found cervical adenocarcinomas, which are not generally seen in untreated mice, in third generation females similar to those induced by direct prenatal DES exposure. In the same study, third generation female mice had increases in ovarian, uterine, and mammary tumors with the total number of reproductive tumors being statistically significant from the control mice.

Grandsons

The early reports of DES grandsons show an increase in hypospadias in this population. Hypospadias occurred twenty times more frequently in the DES grandsons’ cohort, which suggests that their mothers (DES daughters) may have had a disturbed hormonal balance during their reproductive life that interfered with the genital development of the male fetus. The prevalence of hypospadias was found to be >3% in DES grandsons but the risk of the defect is still low. Mouse studies in the third generation DES-exposed male population have found an increased susceptibility for reproductive tumor formation, specifically in the testes, prostate, and seminal vesicles. No effect on reproductive capacity or other deformities was seen in DES grandsons.

Sources

  • Full study (free access) : Exposure to Diethylstilbestrol during Sensitive Life Stages: A legacy of heritable health effects, Birth defects research. Part C, Embryo today : reviews, NCBI PubMed PMC3817964, 2013 Nov 5.
  • Featured image credit Oskars Sylwan.
DES DIETHYLSTILBESTROL RESOURCES

Epigenetics and transgenerational effects of DES

EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals

Selected Abstracts

Prenatal exposure to DES caused hypermethylation of the Hoxa10 gene in the uterus of mice and was linked to uterine hyperplasia and neoplasia later in life. Beyond the effects of prenatal exposure to DES on the daughters exposed in utero are suggestions that this leads to transgenerational effects of the chemical on the reproductive system, although whether this is linked to DNA methylation changes in humans is unknown.

DES caused histone deacetylation in the promoter region of the cytochrome P450 side chain cleavage (P450scc) gene.

Neonatal DES exposure also caused the differential expression of 900 genes in one or both layers of the uterus. Specifically, DES altered multiple factors in the PPARγ pathway that regulate adipogenesis and lipid metabolism, and it perturbed glucose homeostasis, suggesting that DES affects energy metabolism in the uterus. In the mouse uterus, DES altered the expression of chromatin-modifying proteins and Wnt signaling pathway members, caused epigenetic changes in the sine oculis homeobox 1 gene, and decreased the expression of angiogenic factors. DES also altered the expression of genes commonly involved in metabolism or endometrial cancer in mice, and it activated nongenomic signaling in uterine myometrial cells and increased the incidence of cystic glands in rats.

Studies in mice showed that DES induced vaginal adenosis by down-regulating RUNX1, which inhibits the BMP4/activin A-regulated vaginal cell fate decision; induced epithelial cell proliferation and inhibited stromal cell proliferation; and caused persistent down-regulation of basic-helix-loop-helix transcription factor expression (Hes1, Hey1, Heyl) in the vagina, leading to estrogen-independent epithelial cell proliferation. Neonatal exposure to DES caused persistent changes in expression of IGF-1 and its downstream signaling factors in mouse vaginas. It also up-regulated Wnt4, a factor correlated with the stratification of epithelial cells, in mouse vaginas. Interestingly, the simultaneous administration of vitamin D attenuated the ability of DES to cause hyperplasia of the vagina in neonatal mice.

In mice treated prenatally with DES there was a significant increase in enhancer of Zeste homolog 2 (EZH2) protein and EZH2 activity (measured by increased mammary histone H3 trimethylation)—a histone methyltransferase that may be linked to breast cancer risk and epigenetic regulation of tumorigenesis, as well as an increase in adult mammary gland EZH2.

EDC exposures to pregnant animals have been shown to cause multigenerational or transgenerational effects on a number of disease endpoints, particularly reproduction, neurobehavior, and adiposity. This work needs much more follow-up to better determine the underlying mechanisms, which are likely to include epigenetic molecular programming changes. Moreover, research is needed in human populations. Some work has been conducted in grandchildren of DES-exposed women who took this estrogenic pharmaceutical during pregnancy. The consequences on the offspring (F1 generation) are well-studied, and research is beginning to be published on the grandchildren (F2 generation). For environmental chemicals, several ongoing projects need continued funding.

Sources

  • Full study (free access) : EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals, NCBI PubMed PMC4702494, 2015 Nov 6.
  • Featured image credit Craig Whitehead.
DES DIETHYLSTILBESTROL RESOURCES

Association of Exposure to Diethylstilbestrol During Pregnancy With Multigenerational Neurodevelopmental Deficits

DES adverse impact on fetal germ cells, impairing neurodevelopment of offspring

Abstracts

We conducted a large-scale cohort analysis to assess the association between use of diethylstilbestrol during pregnancy and third-generation ADHD. The observed associations were robust to covariate adjustment and sensitivity analyses. Despite animal evidence of adverse multigenerational consequences—including neurodevelopmental disorders—of EDC exposure, to date only a few studies have explored the potential multigenerational implications of EDC exposure in humans. These studies have only considered diethylstilbestrol exposure, and none has studied neurodevelopmental outcomes. Some studies have reported increased risk of hypospadias in grandsons of women exposed to diethylstilbestro during pregnancy. Titus-Ernstoff et al found delayed menstrual regularization, higher odds of irregular menstrual periods, and fewer live births among women whose grandmothers used diethylstilbestrol during pregnancy. Birth defects have also been found in grandchildren of women who used diethylstilbestrol when pregnant.

2018 Study Key Points

Question
Is exposure to diethylstilbestrol during pregnancy associated with adverse multigenerational neurodevelopmental outcomes?

Findings
A cohort study of 47 450 women in the Nurses’ Health Study II found significantly elevated odds for attention-deficit/hyperactivity disorder in the grandchildren (third generation) of users of diethylstilbestrol, a potent endocrine disruptor.

Meaning
Exposure to endocrine disruptors during pregnancy may be associated with multigenerational neurodevelopmental deficits.

IMPORTANCE

Animal evidence suggests that endocrine disruptors affect germline cells and neurodevelopment. However, to date, the third-generation neurodevelopmental outcomes in humans have not been examined.

OBJECTIVE

To explore the potential consequences of exposure to diethylstilbestrol or DES across generations—specifically, third-generation neurodevelopment.

DESIGN, SETTING, AND PARTICIPANTS

This cohort study uses self-reported health information, such as exposure to diethylstilbestrol during pregnancy and attention-deficit/hyperactivity disorder (ADHD) diagnosis, from 47 540 participants enrolled in the ongoing Nurses’ Health Study II. The 3 generations analyzed in this study were the participants (F1 generation), their mothers (F0 generation), and their live-born children (F2 generation). MAIN OUTCOMES AND MEASURES Participant- and mother-reported exposure to diethylstilbestrol during pregnancy and physician-diagnosed child ADHD.

RESULTS

The total number of women included in this study was 47 540. Of the 47 540 F0 mothers, 861 (1.8%) used diethylstilbestrol and 46 679 (98.2%) did not while pregnant with the F1 participants. Use of diethylstylbestrol by F0 mothers was associated with an increased risk of ADHD among the F2 generation: 7.7% vs 5.2%, adjusted odds ratio (OR), 1.36 (95% CI, 1.10-1.67) and an OR of 1.63 (95% CI, 1.18-2.25) if diethylstilbestrol was taken during the first trimester of pregnancy. No effect modification was observed by the F2 children’s sex.

CONCLUSIONS AND RELEVANCE

This study provides evidence that diethylstilbestrol exposure is associated with multigenerational neurodevelopmental deficits. The doses and potency level of environmental endocrine disruptors to which humans are exposed are lower than those of diethylstilbestrol, but the prevalence of such exposure and the possibility of cumulative action are potentially high and thus warrant consideration.

Sources

  • Full study (free access) : Association of Exposure to Diethylstilbestrol During Pregnancy With Multigenerational Neurodevelopmental Deficits, JAMA Pediatrics doi:10.1001/jamapediatrics.2018.0727, May 21, 2018.
  • Featured image by Andre Hunter.
DES DIETHYLSTILBESTROL RESOURCES

DES exposure can disrupt developing organ systems and cause abnormalities that only appear in the subsequent generation

Proceedings of the Summit on Environmental Challenges to Reproductive Health and Fertility: Executive Summary

2008 Manuscript Abstracts

The DES Example – Prenatal exposure to diethylstilbestrol (DES), a synthetic estrogen and thus EDC, provides an unfortunate example of developmental programming. DES was given to U.S. pregnant women between 1938 and 1971 under the erroneous assumption that it would prevent pregnancy complications.

In fact, in utero exposure to DES alters the normal programming of gene families, such as Hox and Wnt, that play important roles in reproductive tract differentiation.

As a result, female offspring exposed to DES in utero are at increased risk of clear cell adenocarcinoma of the vagina and cervix, structural reproductive tract anomalies, infertility and poor pregnancy outcomes, while male offspring have an increased incidence of genital abnormalities and a possibly increased risk of prostate and testicular cancer. These observed human effects have been confirmed in numerous animal models which have also provided information on the toxic mechanisms of DES. Animal experiments have also predicted changes later found in DES-exposed humans, such as oviductal malformations, increased incidence of uterine fibroids and second-generational effects such as increased menstrual irregularities and possibly ovarian cancer in DES-granddaughters and increased hypospadias in DES-grandsons.

DES is but one example of how exposure to EDCs can disrupt developing organ systems and cause abnormalities, many of which only appear much later in life or in the subsequent generation, such as endometriosis, fibroids and breast, cervical and uterine cancer in women; poor sperm quality and increased incidence of cryptorchidism and hypospadias in men; and subfertility and infertility in men and women.

Epigenetic studies have also shown that DES causes alterations in uterine tissue architecture and morphology and heightens susceptibility to uterine adenocarcinoma by inducing permanent changes in several estrogen-responsive uterine genes. These are but a few examples of how the field of epigenetics has and will continue to contribute to our mechanistic understanding of the impact of environmental contaminants on reproductive health.

Uterus Development and the Environment – Women exposed to DES in utero during critical periods of reproductive tract development developed several types of reproductive tract abnormalities, as well as an increased incidence of cervical-vaginal cancer later in life. Animal studies that simulate the human DES experience have since shown that exposure of the developing reproductive tract of CD-1 mice to DES imparts a permanent estrogen imprint that alters reproductive tract morphology, induces persistent expression of the lactoferrin and c-fos genes and induces a high incidence of uterine adenocarcinoma. Experiments in rats have shown exposure to DES during the critical window of uterine development leaves a hormonal imprint on the developing uterine myometrium in rats that were genetically predisposed to uterine leiomyoma, increasing the risk for adult uterine leiomyoma from 65% to greater than 90% and increasing tumor multiplicity and size. DES-induced developmental programming appears to require the estrogen receptor α, suggesting that signaling through this receptor is crucial for establishing developmental programming.

Sources

  • Full study (free access) : Proceedings of the Summit on Environmental Challenges to Reproductive Health and Fertility: Executive Summary, Fertility and Sterility, PMC2440710, 2008 Feb.
  • Featured image Dmitry Ratushny.
DES DIETHYLSTILBESTROL RESOURCES

Epigenetics, Evolution, Endocrine Disruption, Health, and Disease

image of Epigenetics, Evolution, Endocrine Disruption, Health, and Disease

A possible mechanism for how DES exerts its action epigenetically has been proposed recently

2006 Study Abstracts

Endocrine-disrupting chemicals (EDCs) in the environment have been linked to human health and disease. This is particularly evident in compounds that mimic the effects of estrogens. Exposure to EDCs early in life can increase risk levels of compromised physical and mental health. Epigenetic mechanisms have been implicated in this process. Transgenerational consequences of EDC exposure is also discussed in both a proximate (mechanism) and ultimate (evolution) context as well as recent work suggesting how such transmission might become incorporated into the genome and subject to selection. We suggest a perspective for exploring and ultimately coming to understand diseases that may have environmental or endocrine origins.

That epigenetic mechanisms may play a role in endocrine disruption helps explain the transgenerational effects of some hormonally active chemicals. Treatment with diethylstilbestrol (DES) during pregnancy results in vaginal adenocarcinoma in female offspring in humans and mice. Female offspring of mice exposed to DES during pregnancy, when mated to control males, produce a second generation of females who, although not exposed to DES themselves, express this same rare genital tract cancer. This transgenerational transmission of a specific reproductive tract lesion would be hard to explain without invoking an epigenetic mechanism for heritable change and, given the finding of altered DNA methylation patterns in a specific uterine gene in mice treated developmentally with DES, we think a strong case can be made for such a conclusion. Newbold and colleagues next showed that specific, rare genital tract cancers (rete testes cancers) are also expressed and therefore transmitted to the male offspring of females treated in utero with DES. In colloquial terms, this demonstrated the occurrence of reproductive tract tumors in the grandsons and granddaughters of mothers treated with DES. A possible mechanism for how DES exerts its action epigenetically has been proposed recently. The transmission of uniquely specific changes in the program of development in mice has implications for similarly exposed humans as well as the biology of hormonally induced disease.

We have already mentioned that DES treatment of mice during development results in reproductive tract cancers, persistent up-regulation of key estrogen-responsive genes, and altered patterns of gene methylation in the affected genes and that the cancer can be transmitted through two generations. In addition to DES, methoxychlor has been reported to increase global DNA methylation in uterine ribosomal DNA after in utero exposure; the alteration in methylation remains months after treatment.

To understand the role of estrogens in development, there is hardly a more powerful model than that of the outcomes observed in humans and mice developmentally exposed to the synthetic estrogen DES. Female offspring of humans or mice exposed prenatally to DES have a risk for vaginal clear cell adenocarcinoma. The mechanisms underlying these developmentally induced lesions have been sought for three decades. There was the suggestion by clinical investigators that DES had altered the normal differentiation of the epithelial cells of the fetal cervix and vagina such that they responded abnormally to estrogen at puberty, because no cancers had been seen in prepubescent girls. Similarly, ovariectomy of developmentally DES-treated mice prevented the subsequent expression of uterine adenocarcinomas.

Epigenetic change in the molecular program of cell differentiation in the affected tissues may be a common mechanism. The clear cell cancers of the vagina in DES-exposed women displayed genetic instability consistent with epigenetic imprints in the absence of any expected mutation in classical oncogenes or tumor suppressor genes. Using a well validated mouse model for DES genital tract tumors, Li and colleagues discovered that one of the estrogen-inducible genes in the mouse uterus, lactotransferrin, that had been shown earlier to be persistently up-regulated by developmental DES exposure, had an altered pattern of CpG methylation in the promoter region of the gene upstream from the estrogen response element. Subsequent work demonstrated that other developmentally up-regulated genes such as fos and jun also had persistent changes in the pattern of methylation of the gene after DES exposure during development. These experiments raise the possibility that DES (and other environmental estrogens) alter the program of differentiation of estrogen target cells in the reproductive tract through an epigenetic mechanism.

Other studies support this hypothesis. In addition to cervicovaginal adenocarcinomas in female mice and humans exposed prenatally to DES and uterine adenocarcinoma in mice, it has been shown that developmental exposure to DES results in excess risk of uterine leiomyomas (fibroids) in mice, rats, and women. It was also recently reported that sea lions in areas contaminated with EDCs have a higher prevalence of uterine fibroids. The Eker rat carries a germ-line mutation in a tumor suppressor gene and is predisposed to uterine leiomyoma. Cook and colleagues used this model system to demonstrate a DES-induced alteration in developmental imprinting as analyzed by tumor suppressor gene penetrance, concluding that developmental programming by estrogen works in concert with preexisting genetic change. In a population of 819 black and 504 white women, fibroid status was determined by ultrasound screening or surgical record review, whereas prenatal DES exposure was determined by interview. DES-exposed women had a significantly greater risk for uterine fibroids and tended to have larger tumors. The authors conclude that their study, as well as animal studies, indicate a role for prenatal estrogen in the etiology of uterine leiomyoma in women.

Sources

  • Full study (free access) : Epigenetics, Evolution, Endocrine Disruption, Health, and Disease, Endocrinology, Volume 147, Issue 6, Pages s4–s10, doi.org/10.1210/en.2005-1122, June 2006.
  • Featured image academic.oup.
DES DIETHYLSTILBESTROL RESOURCES