EDCs: an Endocrine Society Scientific Statement

EDC-statement banner
The group of molecules identified as endocrine disruptors include synthetic estrogens used as pharmaceutical agents such as Diethylstilbestrol DES.

Abstract

Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement, approved The Endocrine Society, dx.doi.org/10.1210/er.2009-0002, April 17, 2009.

There is growing interest in the possible health threat posed by endocrine-disrupting chemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction.

In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology.

Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor ?, retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use.

We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness.

Discussion (DES and Fertility-specific)

General Introduction: the group of molecules identified as endocrine disruptors is highly heterogeneous and includes synthetic chemicals used as industrial solvents/lubricants and their byproducts [polychlorinated biphenyls (PCBs), polybrominated biphenyls (PBBs), dioxins], plastics [bisphenol A (BPA)], plasticizers (phthalates), pesticides [methoxychlor, chlorpyrifos, dichlorodiphenyltrichloroethane (DDT)], fungicides (vinclozolin), and pharmaceutical agents [diethylstilbestrol (DES)].

Reproduction: in the adult female, the first evidence of endocrine disruption was provided almost 40 yr ago through observations of uncommon vaginal adenocarcinoma in daughters born 15–22 yr earlier to women treated with the potent synthetic estrogen DES during pregnancy. Subsequently, DES effects and mechanisms have been substantiated in animal models. Thus, robust clinical observations together with experimental data support the causal role of DES in female reproductive disorders. However, the link between disorders such as premature pubarche and EDCs is so far indirect and weak, based on epidemiological association with both IUGR and ovulatory disorders. The implications of EDCs have been proposed in other disorders of the female reproductive system, including disorders of ovulation and lactation, benign breast disease, breast cancer, endometriosis, and uterine fibroids.

In the case of DES, there are both human and experimental observations indicating heritability.

Premature ovarian failure, decreased ovarian reserve, aneuploidy, granulosa steroidogenesis: interestingly, mice exposed in utero to DES, between d 9–16 gestation, have a dose-dependent decrease in reproductive capacity, including decreased numbers of litters and litter size and decreased numbers of oocytes (30%) ovulated in response to gonadotropin stimulation with all oocytes degenerating in the DES-exposed group, as well as numerous reproductive tract anatomic abnormalities. In women with in utero exposure to DES, Hatch et al reported an earlier age of menopause between the 43–55 yr olds, and the average age of menopause was 52.2 yr in unexposed women and 51.5 yr in exposed women. The effect of DES increased with cumulative doses and was highest in a cohort of highest in utero exposure during the 1950s. These observations are consistent with a smaller follicle pool and fewer oocytes ovulated, as in DES-exposed mice after ovulation induction.

Reproductive tract anomalies: disruption of female reproductive tract development by the EDC DES is well documented. A characteristic T-shaped uterus, abnormal oviductal anatomy and function, and abnormal cervical anatomy are characteristic of thisin utero exposure, observed in adulthood, as well as in female fetuses and neonates exposed in utero to DES. Some of these effects are believed to occur through ER? and abnormal regulation of Hox genes. Clinically, an increased risk of ectopic pregnancy, preterm delivery, miscarriage, and infertility all point to the devastating effect an endocrine disruptor may have on female fertility and reproductive health. It is certainly plausible that other EDCs with similar actions as DES could result in some cases of unexplained infertility, ectopic pregnancies, miscarriages, and premature deliveries. Although another major health consequence of DES exposurein utero was development of rare vaginal cancer in DES daughters, this may be an extreme response to the dosage of DES or specific to pathways activated by DES itself. Other EDCs may not result in these effects, although they may contribute to the fertility and pregnancy compromises cited above. Of utmost importance clinically is the awareness of DES exposure (and perhaps other EDC exposures) and appropriate physical exam, possible colposcopy of the vagina/cervix, cervical and vaginal cytology annually, and careful monitoring for fertility potential and during pregnancy for ectopic gestation and preterm delivery.

Endometriosis is an estrogen-dependent gynecological disorder associated with pelvic pain and infertility. There are suggestive animal data of adult exposure to EDCs and development of or exacerbation of existing disease, and there is evidence that in utero exposure in humans to DES results in an increased relative risk = 1.9 (95% confidence interval, 1.2–2.8).

Environmental estrogens effects on the prostate: DES exposure is an important model of endocrine disruption and provides proof-of-principle for exogenous estrogenic agents altering the function and pathology of various end-organs. Maternal usage of DES during pregnancy resulted in more extensive prostatic squamous metaplasia in human male offspring than observed with maternal estradiol alone. Although this prostatic metaplasia eventually resolved during postnatal life, ectasia and persistent distortion of ductal architecture remained. These findings have led to the postulation that men exposed in utero to DES may be at increased risk for prostatic disease later in life, although the limited population studies conducted to date have not identified an association. Nonetheless, several studies with DES in mouse and rat models have demonstrated significant abnormalities in the adult prostate, including increased susceptibility to adult-onset carcinogenesis after early DES exposures. It is important to note that developmental exposure to DES, as with other environmental estrogens, has been shown to exhibit a biphasic dose- response curve with regard to several end-organ responses, and this has been shown to be true for prostatic responses as well. Low-dose fetal exposure to DES or BPA (see full study) resulted in larger prostate size in adulthood compared with controls, an effect associated with increased levels of prostatic ARs. This contrasts with smaller prostate sizes, dysplasia, and aging- associated increases in carcinogenesis found after perinatal high-dose DES exposures as noted above. This differential prostatic response to low vs. high doses of DES and other EDCs must be kept in mind when evaluating human exposures to EDCs because the lack of a response at high doses may not translate into a lack of negative effects at low, environmentally relevant doses of EDCs.

Linking basic research to clinical practice: it should be clear from this Scientific Statement that there is considerable work to be done. A reconciliation of the basic experimental data with observations in humans needs to be achieved through translation in both directions, from bench to bedside and from bedside (and populations) to bench. An example of how human observation and basic research have successfully converged was provided by DES exposure in humans, which revealed that the human syndrome is faithfully replicated in rodent models. Furthermore, we now know that DES exposure in key developmental life stages can have a spectrum of effects spanning female reproduction, male reproduction, obesity, and breast cancer. It is interesting that in the case of breast cancer, an increased incidence is being reported now that the DES human cohort is reaching the age of breast cancer prevalence. The mouse model predicted this outcome 25 yr before the human data became available. In the case of reproductive cancers, the human and mouse data have since been confirmed in rats, hamsters, and monkeys. This is a compelling story from the perspective of both animal models and human exposures on the developmental basis of adult endocrine disease.

Prevention and the “precautionary principle”: although more experiments are being performed to find the hows and whys, what should be done to protect humans? The key to minimizing morbidity is preventing the disorders in the first place. However, recommendations for prevention are difficult to make because exposure to one chemical at a given time rarely reflects the current exposure history or ongoing risks of humans during development or at other life stages, and we usually do not know what exposures an individual has had in utero or in other life stages.

In the absence of direct information regarding cause and effect, the precautionary principle is critical to enhancing reproductive and endocrine health. As endocrinologists, we suggest that The Endocrine Society actively engages in lobbying for regulation seeking to decrease human exposure to the many endocrine-disrupting agents. Scientific societies should also partner to pool their intellectual resources and to increase the ranks of experts with knowledge about EDCs who can communicate to other researchers, clinicians, community advocates, and politicians.

Click to download the full study.

More DES DiEthylStilbestrol Resources

Have your say! Share your views